Received 4 May 2005 Accepted 23 May 2005

Online 28 May 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sandra Gracin^a and Andreas Fischer^b*

^aDepartment of Chemical Engineering and Technology, Royal Institute of Technology, 100 44 Stockholm, Sweden, and ^bInorganic Chemistry, Royal Institute of Technology, 100 44 Stockholm, Sweden

Correspondence e-mail: andif@inorg.kth.se

Key indicators

Single-crystal X-ray study T = 299 KMean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.111 Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Hydroxyphenylacetic acid

The crystal structure of commercially available 4-hydroxyphenylacetic acid, $C_8H_8O_3$, is non-centrosymmetric, with four hydrogen bonds between each molecule and adjacent molecules. The hydrogen bonds link the molecules in the crystal structure into an infinite three-dimensional framework.

Comment

We are currently studying surface phenomena and interactions between solid compounds and species in solution in contact with the solid phases. One of the compounds studied is 4-hydroxyphenylacetic acid, (I), the structure of which has not been determined so far. Since knowledge of structure, in particular hydrogen-bonding patterns, is crucial for an understanding of the above-mentioned phenomena, we decided to determine the crystal structure. The quality of the crystals in the sample of the commercially available compound was sufficient for collection of reasonable X-ray diffraction data. Therefore, we did not make any attempts to recrystallize the sample. The results of the structure determination are presented here.

The geometry of the 4-hydroxyphenylacetic acid molecule (Fig. 1) is unexceptional. Although the molecule is not chiral, the compound crystallizes in the non-centrosymmetric space group $P2_12_12_1$.

Unlike 4-aminophenylacetic acid, the structure of which has been determined recently (Gracin *et al.*, 2005) and which crystallizes as a zwitterion, 4-hydroxyphenylacetic acid is present as a neutral uncharged molecule, because of the much lower basicity of the OH group compared with that of the NH_2 group.

Both phenolic and carboxylic OH groups act as hydrogenbond donors. Phenol atom O3 also serves as a hydrogen-bond acceptor; the second hydrogen bond uses carbonyl atom O2 as an acceptor (Table 1). The three-dimensional network thus formed is shown in Fig. 2.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Figure 1

The molecule of p-hydroxyphenylacetic acid. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

A crystal of the purchased material (Sigma–Aldrich, catalogue No. H5,000-4) was used for the structure determination.

Mo $K\alpha$ radiation

reflections

Block, colourless $0.49 \times 0.18 \times 0.16 \text{ mm}$

 $\theta = 4.5 - 21.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 299 K

 $R_{\rm int} = 0.049$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -5 \rightarrow 6$

 $k = -10 \rightarrow 11$

 $l = -18 \rightarrow 18$

Cell parameters from 74

Crystal data

 $C_8H_8O_3$ $M_r = 152.15$ Orthorhombic, $P2_12_12_1$ a = 5.3100 (3) Å b = 9.0392 (4) Å c = 15.3871 (8) Å V = 738.55 (7) Å³ Z = 4 $D_x = 1.368 \text{ Mg m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: none 6743 measured reflections 871 independent reflections 706 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0415P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.28P]
$wR(F^2) = 0.111$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
871 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
101 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.036 (8)

Table 1

Hydı	ogen-	bond	geome	try	(A,	°).
------	-------	------	-------	-----	-----	-----

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O3 - H3A \cdots O2^{i} \\ O1 - H1A \cdots O3^{ii} \end{array}$	0.98	1.71	2.676 (4)	166
	0.95	1.74	2.689 (3)	175

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$.

All H atoms were located in a difference Fourier map (C–H = 0.90–1.03 Å) and then included in the refinement using a riding model, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm carrier atoms)$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figure 2

Packing diagram of p-hydroxyphenylacetic acid, showing the network formed by hydrogen-bonded acid molecules. The packing is viewed approximately along the a axis of the crystal. Hydrogen bonds are shown as dashed lines.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *MAXUS* (Mackay *et al.*, 1999).

The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

References

- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Gracin, S., Svärd, M. & Fischer, A. (2005). Acta Cryst. E61, o1536-o1537.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). MAXUS. Nonius BV, Delft, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.